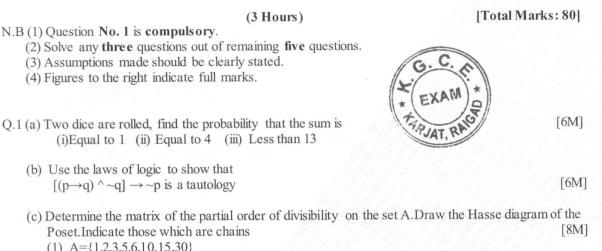
Paper / Subject Code: 50902 / Digital Logic Design and Analysis S.E. SEM - III / COMP / CHOICE BASED / NOV 2018 / 28.11.2018

Marks: 80 Marks

NB: - Question 1 is compulsory

Duration: - 3 Hours

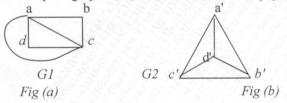

Solve any three questions from the remaining.

1	a) Convert decimal number 576.24 into binary, base-9, octal, hexadecimal system.	04
	b) Construct hamming code for 1010 using odd parity.	04
	 c) Convert (-89)₁₀ to its equivalent Sign Magnitude, 1's Complement and 2's Complement Form 	04
	d) Perform $(BC5)_{H} - (A2B)_{H}$ without converting to any other base	04
	e) Prove De Morgans theorem	04
2a.	Given the logic expression: $A + \overline{B}\overline{C} + AB\overline{D} + ABCD$ 1. Express it in standard SOP form.	10
	2). Draw K-map and simplify.	
	3). Draw logic diagram using NOR gates only.	
2b.	Reduce using Quine McClusky method & realize the operation using only NAND gates.	10
	$F(A,B,C,D) = \prod M(0,2,3,6,7,8,9,12,13).$	
За.	Design a 4-bit binary to gray code converter.	10
3b.	Design a 4-bit BCD adder using IC 7483 and necessary gates. https://www.freshersnow.com/previous-year-question-papers/	10
4a.	Implement the following logic function using all 4:1 multiplexers with the select inputs as 'B', 'C', 'D', 'E' only. $F(A,B,C,D,E) = \sum m (0, 1, 2, 3, 6, 8, 9, 10, 13, 15, 17, 20, 24, 30)$	10
4b.	Convert a SR flip flop to J K flip flop	10
5a.	Design a mod-6 synchronous counter using T FF	10
5b.	Explain the operation of 4-bit universal shift register.	10
6	Write short notes on any two	20
a.	VHDL	
b.	TTL and CMOS logic families	
с.	4-bit Magnitude comparator	
d.	3 to 8 line decoder	

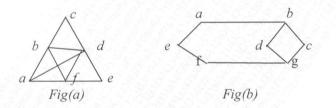
46D3B683026F7927DA11E9601A8C2ABB

Paper / Subject Code: 50903 / Discrete Structures OP CODE : 40416

S.E. SEM - III / COMP / CHOICE BASED / NOV 2018 / 04.12.2018


(1)	-m	$\{1, 2, 3, 5, 0, 10, 15, 5\}$	
(0)	A .	(2(122(72)))	

(2) $A = \{3, 6, 12, 36, 72\}$


Q.2 (a) Find the complement of each element in D_{42} .

(b) Let Q be the set of positive rational numbers which can be expressed in the form 2^a 3^b, where a and b are integers .Prove that algebraic structure (Q, .) is a group. Where . is multiplication operation.
[6M]

(c) Define isomorphic graphs .Show whether the following graphs are isomorphic or not . [8M]

Q.3 (a) Determine which of the following graph contains an Eulerian or Hamiltonian circuit. [6M]

(b) For all sets A, X and Y show that $A \times (X \cap Y) = (A \times X) \cap (A \times Y)$

[6M]

[6M]

- (c) Let f(x) = x+2, g(x) = x-2 and h(x) = 3x for $x \in \mathbb{R}$, Where $\mathbb{R} = \text{Set of real numbers. Find}$ [8M] (g, f), (f, g), (f, f), (g, g), (f, h), (h, g), (h, f), (f, h, g)
- Q.4 (a) Let R is a binary relation. Let $S = \{(a, b) | (a, c) \in R \text{ and } (c, b) \in R \text{ for some } c\}$ Show that if R is an equivalence relation then S is also an equivalence relation. [6M]

TURN OVER

3B3D34E0699A1DD55426B84071345C12

Paper / Subject Code: 50903 / Discrete Structures QP CODE : 40416

	(b)	Determine the generating function of the numeric function a _r , where	[6M]
		(i) $a_r = 3^r + 4^{r+1}$, $r \ge 0$ (ii) $a_r = 5$, $r \ge 0$	
	(c)	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	[8M]
Q.5	(a)	Determine the number of positive integers n where $1 \le n \le 100$ and n is not divisible by 2, 3 or 5.	[6M]
	(b)	Use mathematical induction to show that $1+5+9+\dots++(4n-3) = n (2n-1)$	[6M]
	(c)) Find the greatest lower bound and least upper bound of the set $\{3, 9, 12\}$ and $\{1, 2, 4, 5, 10\}$ they exists in the poset (z+, /). Where / is the relation of divisibility.	if [8M]
Q.6	(a)) Let $A = \{1,2,3,4\}$ and Let $R = \{(1,1) (1,2) (1,4) (2,4) (3,1) (3,2) (4,2) (4,3) (4,4)\}$. Find transitive closure by Warshall's algorithm.	ve [6M]
		Let $H = \{[0]_6, [3]_6\}$ find the left and right cosets in group Z_6 . Is H a normal subgroup of group of Z_6 .	[6M]
	(c)	Find the complete solution of the recurrence relation $a_n + 2 a_{n-1} = n+3$ for $n \ge 1$ and with $a_0 = 3$	[8M]

2

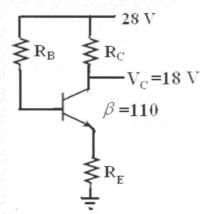
Paper / Subject Code: 50904 / Electronics Circuits and Communication Fundamentals S.E. SEM III / COMP / CHOICE BASED / NOV 2018 / 11.12.2018

Q. P. Code: 26300

(3 Hours)

- **N.B.**: 1. Question **ONE** is compulsory.
 - 2. Solve any **THREE** out of remaining questions.
 - 3. Draw neat and clean diagrams.
 - 4. Assume suitable data if required.
- Q. 1. A. Explain the concept and significance of CMRR and Slew Rate in case of op-amps. 5
 B. Given β=120 and I_E= 3.2 mA for a common-emitter configuration with r₀=∞ Ω, determine:

(a) Z_i


- (b) A_v if a load of 2 k Ω is applied.
- (c) A_i with the 2 k Ω load.

C. Discuss the factors that influence modulation index of an FM wave.

- D. Justify that adaptive delta modulation superior to delta modulation.
- Q. 2 A. The emitter bias configuration as shown in following figure has the specifications:

$$I_{CQ} = \frac{1}{2}I_{Csat}$$
 $I_{Csat} = 8 mA$ $V_C = 18 V$ and $\beta = 110$

Determine R_C, R_E and R_B.

B. Explain how op-am can be used comparator and zero crossing detector.

10

TURN OVER

621EAA5DB662327A171E946020282947

5 5

5

10

Q. P. Code: 26300

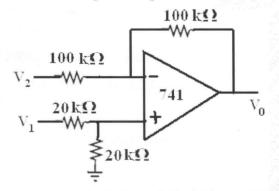
5

5

5

5

10


5

5

5

5

- Q. 3 A. What is the source of the leakage current in a transistor?
 If the emitter current of a transistor is 8 mA and I_B is 1/100 of I_C, determine the levels of I_C and I_B.
 - B. Draw and explain Colpitts oscillator.
 - C. Explain principle of FDM.
 - D. Determine the output voltage for the circuit if V_1 =5V and V_2 =3V

- Q. 4 A. What is DSBSC wave and explain its generation using balanced modulator.
 - B. What is multiplexing in communication system? Draw block diagram of TDM-PCM system and explain.
 10
- Q. 5 A. State Shannon's theorem on channel capacity.

What is the maximum capacity of a perfectly noiseless channel whose bandwidth is 120 Hz, in which the values of the data transmitted may be indicated by any one of the 10 different amplitudes? 10

- B. With respect to neat diagram explain the elements of analog communication system. 10
- Q. 6 A. What is meant by Nyquist rate in sampling and explain its significance.
 - B. Give the proper definition for entropy and information rate.
 - C. Write short note on op-amp as differentiator.
 - D. Differentiate between Class A and Class C power amplifiers with respect to circuit diagram, operating cycle and power efficiency.

621EAA5DB662327A171E946020282947

Paper / Subject Code: 50901 / Applied Mat

S.E. SEM - III / COMPU / CHOICE BASED / NOV 2018 / 20.11.2018

Time : 3 hrs

NB 1. Question No.I is compulsory

2. Attempt any three from the remaining six questions

3. Figures to the right indicate full marks

Q1a If Laplace transform of $erf(\sqrt{t}) = \frac{1}{s\sqrt{s+1}}$, then find $L\left\{e^{t}.erf\left(2\sqrt{t}\right)\right\}$

b Find the Orthogonal Trajectory of the family of curves given by $e^{-x} \cdot \cos y + x \cdot y = c$

c Find Complex Form of Fourier Series for . e^{2x} ; 0 < x < 2

d. If the two regression equations are 5x - 6y + 90 = 0, 15x - 8y - 180 = 0,

find the means of x and y, the Correlation Coefficient and Standard deviation of x if variance of Y is 1

Q2 Show that the function is Harmonic and find the Harmonic Conjugate $v = e^x \cdot \cos y + x^3 - 3xy^2$ [6]

b Find Laplace Transform of
$$f(t) = \begin{cases} t ; 0 < t < 1 \\ 0 ; 1 < t < 2 \end{cases}$$
, $f(t+2) = f(t)$ [6]

c. Find Fourier Series expansion of $f(x) = x - x^2$, -1 < x < 1[8]

Q3 a Find the Analytic function f(z) = u + iv if $v = \log(x^2 + y^2) + x - 2y$ [6]

b Find Inverse Z transform of $\frac{3z^2 - 18z + 26}{(z-2)(z-3)(z-4)}$, 3 < |z| < 4[6]

c Solve the Differential Equation $\frac{d^2y}{dt^2} + 4y = f(t), f(t) = H(t-2), y(0) = 0, y'(0) = 1$ using Laplace Transform [8]

Q4 a Find
$$Z\{f(k) * g(k)\}$$
 if $f(k) = \left(\frac{1}{2}\right)^k, g(k) = \cos \pi k$ [6]

b Find the Spearman's Rank correlation coefficient between X and Y.

X	60	30	37	30	42	37	55	45
Y	50	25	33	27	40	33	50	42

c Find the inverse Laplace transform of i) $\frac{3s+1}{(s+1)^4}$ ii) $\frac{e^{4-3s}}{(s+4)^{5/2}}$

BF8003E49I 1 4ECBD94387E8FAD6EC27

[20]

[8]

[6]

Marks : 80

Q. P. Code : 24408

Q5 a Find Inverse Laplace Transform usng Convolution theorem

$$\frac{1}{(s-4)^2(s+3)}$$
[6]

b Show that the functions $f_1(x) = 1$, $f_2(x) = x$ are Orthogonal on (-1,1). Determine the constants *a*, *b* such that the function $f(x) = -1 + ax + bx^2$ is Orthogonal to both $f_1(x), f_2(x)$ [6] on the (-1,1)

c Find the Laplace transform of i) $e^{-3t} \int_{0}^{t} t \sin 4t \, dt$ ii) $\int_{0}^{\infty} \frac{e^{-t} - e^{-2t}}{t} dt$ [8]

Q6 a Fit a second degree parabola to the given data

X	1	1.5	2	2.5	3	3.5	4
Y	1.1	1.3	1.6	2	2.7	3.4	4.1

bFind the image of $\left|z - \frac{5}{2}\right| = \frac{1}{2}$ under the transformation $w = \frac{3-z}{z-2}$

c Find Half Range Cosine Series for $f(x) = x \sin x$ in $(0,\pi)$ and hence find $\frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} - \dots = \frac{\pi - 2}{4}$ [8]

Paper / Subject Code: 50901 / Applied Mathematics-III

[6]

[6]